EasyTREK
SP-500
two-wire integrated ultrasonic level transmitter

Installation and Programming manual

Manufacturer:
NIVELCO Process Control Co.
H-1043 Budapest, Dugonics u. 11.
Tel.: (36-1) 889-0100 \quad Fax: (36-1) 889-0200
E-mail: sales@nivelco.com ${ }^{\text {—n}}$ www.nivelco.com

CONTENTS

1. INTRODUCTION 5
2. TECHNICAL DATA 6
2.1. General data6
2.2. Special data7
2.3. Accessories7
2.4. Order codes (Not all combinations are available)7
2.5. Dimensions 8
3. INSTALLATION 9
3.1. Liquid Level Measurement 9
3.2. Open channel flow measurement 11
4. WIRING 11
5. PUTTING INTO OPERATION 12
5.1. Usage 12
5.2. Special conditions of safe use 12
5.3. Programming 13
5.3.1. Measurement configuration 13
5.3.2. Current Output 20
5.3.3. Relay Output 22
5.3.4. Digital communication 23
5.3.5. Measurement optimisation 23
5.3.6. Volume (content) measurement 27
5.3.7. Open channel flow measurement 28
5.3.8. Programming the VOLUME / MASS / FLOW TABLE) 34
5.3.9. Informational parameters (read only parameters). 35
5.3.10. Additional parameters of the flow metering. 36
5.3.11. Other parameters 36
6. MAINTENANCE AND REPAIR 37
6.1. Firmware upgrade 37
7. ERROR CODES 37
8. PARAMETER TABLE 38
9. SOUND VELOCITY VALUES IN DIFFERENT GASES 40

4/40 • spa5804a0600p_05

1. INTRODUCTION

Application

The EasyTREK compact ultrasonic level transmitters from NIVELCO are excellent tools for level measurement of liquids.
Level measurement technology based on the non-contacting ultrasonic principle is especially suited for applications where, for any reason, no physical contact can be established to the surface of the material to be measured.

Principle of Operation

The ultrasonic level metering technology is based on the principle of measuring the time required for the ultrasound pulses to make a round trip from the sensor to the level to be measured and back. The sensor emits an ultrasonic pulse train and receives the echoes reflected. The intelligent electronic device processes the received signal by selecting the echo reflected by the surface and calculates from the time of flight the distance between the sensor and the surface which constitutes the basis of all output signals of the EasyTREK.

A Total beam angle of $5^{\circ}-7^{\circ}$ at -3 dB as is featured by most of Nivelco's SenSonic transducers ensuring a reliable measurement in narrow silos with uneven side walls as well as in process tanks with various protruding objects. Furthermore, as a result of the narrow beam angle - the emitted ultrasonic signals have an outstanding focusing - deep penetration through gases, vapour and foam is ensured.

Minimum measuring distance $\left(X_{m}\right)$ is determined by the design of the unit within which the measurement is not possible (Dead Zone) its value is according with P05 on page 18. Since measurement is impossible within this range material should not get into this zone.

Maximum measuring distance $\left(\mathrm{X}_{\mathrm{M}}\right)$ is the greatest distance (determined by the design of the unit) which can be measured by the unit under ideal conditions. (See parameter P04 on page 17). Maximum measuring distance of the actual application (H) must not be greater than X_{M}.
2. TECHNICAL DATA

2.1. General data

Transducer / enclosure materials	PP, PVDF	
Process temperature	PP, PVDF transducers $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}\left[-20^{\circ} \mathrm{F} \ldots 190^{\circ} \mathrm{F}\right]$	
Ambient temperature	$-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\left[-20^{\circ} \mathrm{F} \ldots 175^{\circ} \mathrm{F}\right]$	
Pressure ${ }^{(1)}$ (Absolute)	$0.05-0.3 \mathrm{MPa}(0.5-3 \mathrm{bar})[7.25 \mathrm{psi}-43.5 \mathrm{psi}]$	
Seals	PP transducer: EPDM; All other transducer versions: FPM	
Ingress protection	IP68	
Power supply	$10^{(3)}-36 \mathrm{~V}$ DC with HART communication	$40 \mathrm{~mW}-720 \mathrm{~mW}$, Galvanic isolation; protection against surge transients
Accuracy ${ }^{(2)}$	\pm (0.1\% measured $+0.025 \%$ max.) or \pm (0.05% max.) whichever is greater	
Resolution	Depending on the measured distance: <2 m: $1 \mathrm{~mm}, \quad 2-5 \mathrm{~m}: 2 \mathrm{~mm}, \quad 5-10 \mathrm{~m}: 5 \mathrm{~mm}, \quad>10 \mathrm{~m}: 10 \mathrm{~mm}$ [$<6.5 \mathrm{ft}: 40 \mathrm{mil}, 6.5 \mathrm{ft}-16 \mathrm{ft}: 78 \mathrm{mil}, 16 \mathrm{ft}-32 \mathrm{ft}: 200 \mathrm{mil},>32 \mathrm{ft}: 400 \mathrm{mil}]$	
Outputs	Analogue: $4-20 \mathrm{~mA},(3.9-20.5 \mathrm{~mA}), \mathrm{R}_{\text {tmax }}=\left(\mathrm{U}_{\mathrm{t}}-10 \mathrm{~V}\right) / 0.02 \mathrm{~A}$, Galvanic isolation; protection against surge transients	
	SPDT relay, $30 \mathrm{~V} / 1 \mathrm{~A} \mathrm{DC} ; 48 \mathrm{~V} / 0.5 \mathrm{~A} \mathrm{AC}$	
	Serial communication: HART interface (terminal resistor ≥ 250 Ohm)	
	Programming / diagnostic interface: 3.3 V LVDS, $100 \mathrm{~mA} \mathrm{max.}$,	
Electrical connection	$6 \times 0.5 \mathrm{~mm}^{2}$ [20 AWG] shielded cable $\varnothing 6 \mathrm{~mm} \times 5 \mathrm{~m}$ (available max. length 30 m)	
Electrical protection	Class III SELV	

(1) For pressures below 1 bar consult with your representative at NIVELCO
(2) Under optimal circumstances of reflection and stabilised transducer temperature.
(3) Only partial operation is provided. Reliable operation without any restrictions is guaranteed at $>11 \mathrm{~V}$ terminal voltage.

2．2．SPECIAL DATA

Special data for PP，PVDF and PTFE transducers（also apples to ex models）

Type	SP■－5A \square－\square	SP■－59口－口	SP■－58■－口	SP■－57口－口	SP \square－56口－口	SP \square－54 \square－\square
Transducer material	PP，PVDF					
Max．measuring distance＊$\left(\mathrm{X}_{\mathrm{M}}\right)$ （ m ）$[\mathrm{ft}]$	3 （10）	5 （17）	8 （26）	10 （33）	12 （40）	18 （60）
Min．measuring distance＊ （Dead band）（ X_{m} ）［m（in）］	0.15 （6）	0.18 （7）	0.2 （8）	0.25 （10）		0.35 （14）
Total beam angle（－3 dB）	5°	6°	5°	7°	5°	
Measuring frequency	120 kHz	80 kHz		50 kHz	60 kHz	40 kHz
Upper process connection	1＂BSP					
Lower process connection	1＂BSP／NPT	1122 BSP／NPT	2" BSP / NPT		－	

＊（from the transducer face）

2．3．ACCESSORIES

－Warranty Card
－Installation and Programming Manual
－Declaration of Conformity

2．4．Order codes（Not all combinations are available）

2.5. DIMENSIONS

3. INSTALLATION

3.1. Liquid Level Measurement

OBSTACLES

Make sure that no objects (cooling pipes, bracing members, thermometers etc.) protrude into the sensing cone of the ultrasonic beam.
Remark: EasyTREK programming allows one fixed object that would otherwise disturb the measurement to be blocked out. (see P29 of programming).

FOAM

Foaming of the liquid surface may render ultrasonic level metering impossible. If possible, a location should be found, where foaming is the least (device should be located as far as possible from liquid inflow) or a stilling pipe or well should be used.

WIND
Intensive air (gas) movements in the vicinity of the ultrasonic cone is to be avoided. A strong draft of wind may "blow away" the ultrasound. Devices with lower measuring frequency ($40,20 \mathrm{kHz}$) are recommended.

FUMES / VAPOURS

For closed tanks containing chemicals or other liquids, which creates fume/gases above the liquid surface especially for outdoor tanks exposed to the sun, a strong reduction of the nominal measuring range of the ultrasonic device is to be considered during device selection. Devices with lower measuring frequency ($40,20 \mathrm{kHz}$) are recommended in these cases.

STAND-OFF

The structure of the stand off pipe should be rigid; the inner rim where the ultrasonic beam leaves the pipe should be rounded.

L	$\mathrm{D}_{\min }$		
	SP $\square-59 \square$	SP \square-58 \square	SP \square-57 \square
150	50	60	60
200	50	60	75
250	65	65	90
300	80	75	105
350	95	80	120

L	$D_{\min }$
	$S P \square-54 \square$
90	130
200	140
350	150
500	160

10/40 • spa5804a0600p_05

3.2. OPEN CHANNEL FLOW MEASUREMENT

- The unit is suitable for open channel flow measurement with the constructive works listed in 5.3.8.
- For ultimate accuracy, install the sensor as close as possible above the expected maximum water level (see minimum measuring range).
- Install the unit in a place defined by the characteristics of the metering channel along the longitudinal axis of the flume or weir. In case of Parshall flumes supplied by NIVELCO the location of the sensor is marked.
- In some cases foam may develop on the surface. Make sure that the surface, opposite to the sensor, remains free of foam for proper sound reflection.
- The unit should be fixed so that it's position would not change.
- From measurement accuracy point of view the length of the channel sections preceding and following the measuring flume and their method of joining to the measuring channel section are of critical importance.
- Despite of the most careful installation, the accuracy of flow metering will be lower than that of specified for the distance measurement. The features of the flume or weir applied will determine it.
- Devices should be protected against overheating due to direct sunshine by using sunshades.

4. WIRING

- Make sure the terminals in the box are not under power (Use shielded cable $7 \times 0.5 \mathrm{~mm}^{2}$ (20 AWG) - with relay output, $4 \times 0.5 \mathrm{~mm}^{2}$ - without relay output suggested in the technical data or stronger).
- After powering the necessary programming can be performed.

Wire colours:

Pink - relay $\mathbf{C 1}$ output	White $-\mathbf{I}$,	one of the points of current loop, power supply and HART (polarity independent)
Grey - relay CC output	Brown $-\mathbf{I}$,	other point of current loop, power supply and HART (polarity independent)
Blue - relay $\mathbf{C 2}$ output	Black $-\mathbf{G N D}$, functional earthing and shielding point	

Extension of the integrated cable:

Should extension be needed the use of connection box is suggested.
The shielding of the two cables should be connected and grounded at the signal processing device.

5. PUTTING INTO OPERATION

5.1. UsAGE

Subsequent to powering the correctly wired device would start to tick and after $10-20 \mathrm{~s}$ ECHO LED go on and $4-20 \mathrm{~mA}$ signal appears on the current output. Measurement will be according to the factory setting. The factory setting is throughout apt to check proper working and to perform simple measurement tasks but features residing in the unit can only be utilised by adjusting the EasyTREK to the application by programming. For sound knowledge of the operation features and proper solving of difficult measurement applications the parts of the programming should carefully be studied.
LED indication:

- ECHO-LED
- On, if the unit detects proper echo
- COM-LED
- Blinking on HART communication
- Is ON in the state of remote programming
- RELAY-LED (optional)
- Lits, if CC-C2 is ON
- Does not lit, if CC-C1 is ON

Device can be reset to factory setting. Default of EasyTREK SP-500 is the following:
\Rightarrow Measurement: level (LEV)
View of the transmitter neck from above:

\Rightarrow Zero level assigned to the maximum distance
\Rightarrow Current output proportional to the level
$\Rightarrow 4 \mathrm{~mA}$ and 0% assigned to zero level.
$\Rightarrow 20 \mathrm{~mA}$ and 100% a assigned to the maximum level (minimum distance)
\Rightarrow Error indication by the current output: holds last value.
\Rightarrow Damping: 60 s .

5.2. SPECIAL CONDITIONS OF SAFE USE

The cable outside the unit should be fixed so that it should be free of loading.
The terminal box should be selected in accordance with the electrical class of the area.

5.3. Programming

The HART interface of the EasyTREK provides for access to the whole parameter set and possibility of their programming. Parameter set can be reached in two different ways: by the use of the

- EView2 software run on the PC connected through HART modem to the loop or
- NIVELCO made MultiCONT multi-channel process control unit.

Since these access methods differ in their form and handling present manual does not review them. The information is contained in the relevant descriptions and user's manuals.

5.3.1. Measurement configuration

POO: - c ba Engineering Units
FACTORY DEFAULT: 000

Programming of this parameter will result in loading the factory default with the corresponding engineering units. Therefore all parameters should be set again!

\mathbf{a}	Operation
$\mathbf{0}$	Liquid level measurement

b	Engineering units (according to "c")	
	Metric	US
0	m	tt
1	cm	inch

c	Calculation system
0	metric
1	US

Parameter value "a" will determine the basic measurement value that will be transmitted. Subsequently values for the relays are also relating to these quantities.

Transmitted value	$\begin{gathered} \text { VOL } \\ \text { fp40...P45(H-DIST) } \end{gathered}$
Parameters to set	$\begin{aligned} & \begin{array}{l} \text { P00 } \\ \text { P01(a) } \\ \text { P02(b) } \\ \text { P04 } \\ \text { P05 } \\ \text { P05 } \end{array} \quad \begin{array}{l} \text { X } \end{array} \end{aligned}$

A: Shortest measurable distance
B: Volume (content) pertaining to the greatest measurable level
C: Whole value of the vessel
D: diagram valid for the default value of P10 P11

a	Temperature
0	${ }^{\circ} \mathrm{C}$
1	${ }^{\circ} \mathrm{F}$

This table is interpreted according to $\mathrm{POO}(\mathrm{c}), \mathrm{P01(a)}$ and $\mathrm{PO2(c)}$ and is irrelevant in case of percentage measurement [$\mathrm{PO1(a)}=2$ or $\mathbf{4})$]

b	Volume		Weight (set also P32)		Volume flow	
	Metric	US	Metric	US	Metric	US
$\mathbf{0}$	m^{3}	ft^{3}	-	lb (pound)	$\mathrm{m}^{3} /$ time	$\mathrm{ft}^{3} /$ time
$\mathbf{1}$	litre	gallon	tons	tonnes	litre/time	gallon/time

c	Time
0	s
1	min
2	hour
3	day

Attention!

EasyTREK is a level transmitter. Although it can be used for measuring weight, due to factors involved in doing so, accuracy may essentially be influenced.

P03: -.-a Temperature compensation mode
FACTORY DEFAULT: 0
Temperature compensation mode

a	Temperature compensation mode
0	Automatic
1	Manual

Automatic: The compensation is done with using the value measured by the temperature sensor.
Manual: The compensation is done with a fixed setpoint temperature value independently of the measured value (P07).

This is the only parameter that has to be programmed for each application other than distance (however to avoid disturbing effect of possible multiple echoes it is suggested to do this in distance measurement applications too).
The maximum distance to be measured is the greatest distance between the surface of the transducer and the farthest level to be measured. The factory programmed, greatest distances (DEFAULT values) which can be measured by the units are listed in the table below. For the actual application the maximum distance to be measured i.e. the distance between the sensor and the bottom of the tank should be entered in P04.

EasyTREK	Maximum measuring distance X $_{\mathbf{M}}[\mathrm{m}(\mathrm{ft})]$
Level transmitter for liquids	Transducer material PP / PVDF
SPD-5A	$3(10)$
SPD-59	$5(17)$
SPD-58	$8(26)$
SPD-57	$10(33)$
SPD-56	$12(40)$
SPD-54	$18(60)$

Since the level is determined by calculating the difference between the value set in P04 and distance (DIST) is measured by the unit, it is essential that the correct value of (H) is set in P04. To obtain the best accuracy it is suggested that this distance is measured in the empty tank.

The range，beginning with the sensor＇s surface，within which（due to the physical restraint of the ultrasound measurement system）measurement can not be made，is called the dead zone．The EasyTREK will not accept any echo within the blocking distance set here．

Close－end blocking may be represented as the extension of the dead zone within which a possible echo will not be taken into consideration making possible to exclude disturbing objects near to the sensor．
Automatic Close－end blocking＝Dead Band control（ $\mathrm{P} 05=\mathrm{X}_{\mathrm{m}}$ ）
Device with factory default will automatically set the smallest possible dead band depending on the conditions of the operation．This will be under optimal conditions a bit smaller in unfavourable circumstances greater than value given in the chart．

Manual Close－end－blocking with limitation \geq dead zone（P05＞ X_{m} ）

By entering a value，higher than the factory default the close－end blocking will be either the value programmed in P05 or the actual dead zone distance（influenced by the actual conditions of the application）whichever is greater．

EasyTREK for liquids	Minimum measuring distance $\mathbf{X}_{\mathrm{m}}[\mathrm{m}$（in）］
	Sensor material PP／PVDF
SPロ－5A	$0.15(6)$
SPD－59	$0.18(7)$
SPD－58	$0.2(8)$
SPロ－57	$0.25(10)$
SPロ－56	$0.35(12)$
SPロ－54	

Far-end blocking is the range below the level set in parameter P06. The far-end blocking can be used to avoid disturbing effect of stirrer or heaters at the bottom of the tanks. Detecting echoes in this range the unit provides special signals.

A.) Measuring level or content

Level sinking below

- the value of P06 current output is according to the value of the far-end blocking and further
- below SUB 0 (7/8 of P06) the ERROR CODE 10 will be transmitted via HART

- Level rising over value of far-end blocking:

The calculation of level and volume will be based on the programmed tank dimensions, therefore the measured or calculated process values will not be influenced in any way, by the far end blocking value.

B.) Open channel flow metering

Far-end blocking will be used for those small levels below which the accurate volume flow calculation is no longer possible.

- Level in the flume/weir sinking below the blocked out range: - Output current value will be according to the value of $\mathrm{Q}=0$ - 0 value transmitted via HART for display of „No Flow" or 0
- Level in the flume/weir rising over the blocked out range: The calculation of volume flow will be based on the programmed flume/weir data; therefore the measurement values will not be influenced in any way, by the far end blocking value.

P07:

 Temperature compensation with fixed value FACTORY DEFAULT: $20^{\circ} \mathrm{C}$
5.3.2. Current Output

P08: .-.- Fixed current output
Fixed current output setting parameter
With this parameter the output current can be set to a fixed value between 3.8 mA and 20.5 mA .
This automatically overwrites the 4 mA value set by the HART multidrop mode and the transmitted analogue output current is deactivated.
P10: - -- Value (of distance, level, volume or flow) assigned to 4 mA current output FACTORY DEFAULT: 0
P11: .-.- Value (of distance, level, volume or flow) assigned to 20 mA current output FACTORY DEFAULT: $X_{m}-X_{m}$
Values are interpreted according to P01(a). Assignment can be made so that the proportion between the change of the (measured or calculated) process value and the change of the current output be either direct or inverse. E.g. level 1 m assigned to 4 mA and level 10 m assigned to 20 mA represents direct proportion and level 1 m assigned to 20 mA and level 10 m assigned to 4 mA represents the inverse proportion.

Transmitting level

A: Smallest measurable dist.
D: diagram valid for default values of P10 and P11

Error indication by output current:
Error will be indicated by the EasyTREK transmitter on the current output according to the set value as long as error is present.
(Error codes are given in Chapter 7).

\mathbf{a}	Error indication by output current
$\mathbf{0}$	HOLD (hold last value)
$\mathbf{1}$	3.8 mA
$\mathbf{2}$	22 mA

Current output mode:

b	Current output mode
0	Automatic
1	Manual

Automatic: The current output value is calculated from the measured value, the transmitter output is active.
Manual: The current output value is not calculated from the measured value, but a fixed (according to P08) current output value is transmitted. In this mode, the current output error setting is irrelevant.
This parameter overwrites the HART multidrop communication mode 4 mA value!

5.3.3. Relay Output

P13: ---a Relay function

a	Relay function			Also set:
0	DIFFERENTIAL LEVEL CONTROL (Hysteresis control) Relay is energised if the measured or calculated value exceeds the value set in P14 Relay is de-energised if the measured or calculated value descends under the value set in P15			P14, P15 There is a need to set (in level min .20 mm) hysteresis between P14 and P15 P14 > P15 - normal operation P14 < P15 - inverted operation
1	Relay is energised in case of Echo Loss			
2	Relay is de-energised in case of Echo Loss			-
3	COUNTER Used for open channel flow metering. A 100 msec pulse is generated every 1,10 , $100,1.000$ or $10.000 \mathrm{~m}^{3}$ according to P17.			$\begin{array}{\|l} \hline P 17=0: 1 \mathrm{~m}^{3} \\ \mathrm{P} 17=1: 10 \mathrm{~m}^{3} \\ \mathrm{P} 17=2: 100 \mathrm{~m}^{3} \\ \mathrm{P} 17=3: 1.000 \mathrm{~m}^{3} \\ \mathrm{P} 17=4: 10.000 \mathrm{~m}^{3} \end{array}$

In de-energised state of the device the "C1" circuit is closed.
FACTORY DEFAULT: 2

P14: \ldots	Relay parameter - Operating value	FACTORY DEFAULT: 0
P15: \ldots	Relay parameter - Releasing value	FACTORY DEFAULT: 0
P17: ...	Relay parameter - Pulse rate	FACTORY DEFAULT: 0

FACTORY DEFAULTS: P14=0, P15=0, P17=0

5.3.4. Digital Communication

P19: ..-a Short (HART) address of the unit
These addresses with $0-63$ are, in accordance with the HART standard, for distinguishing units in the same loop.

- Address: 0 current output of $4-20 \mathrm{~mA}$ operational
- Address: $1-15$ current output is fixed to 4 mA .

5.3.5. Measurement optimisation

P20: --- Damping
Damping time is used to damp the unwanted fluctuations of the output and display. If the measured value changes rapidly the new value will settle with 1% accuracy after this set time. (damping according to an exponential function).

	For testing only	Applicable
No or moderate fume / waves	0 sec	2 sec
Heavy or dense fume or turbulent waves	$>6 \mathrm{sec}$	$>10 \mathrm{sec}$

P22: ...-a Dome top tank compensation
FACTORY DEFAULT: 0
This parameter can be used to reduce disturbing effect of possible multiple echoes

\mathbf{a}	Compensation	Remark
$\mathbf{0}$	OFF	In case the EasyTREK is not mounted in the centre of the top and the top is flat.
1	ON	In case the EasyTREK is mounted in the centre of a tank with dome-shaped top

P24: ---a Target tracking speed
FACTORY DEFAULT: 0
In this parameter evaluation can be speed up at the expense of the accuracy.

\mathbf{a}	Tracking speed	Remark
$\mathbf{0}$	Standard	For most applications
$\mathbf{1}$	Fast	For fast changing level
$\mathbf{2}$	Special	Only for special applications (measuring range is reduced to 50% of the nominal value)
		The measuring window is inactive and the EasyTREK will respond practically instantly to any target.

A so-called measuring window is formed around the echo signal. The position of this measuring window determines the flight time for calculation of the distance to the target. (the picture below can be seen on the test oscilloscope)

Some applications involve multiple (target + disturbing) echoes even within the measuring window. Basic echo selection will be done by the QUEST+ software automatically. This parameter influences the echo selection only within the measuring window.

\mathbf{a}	Echo in the window to be selected	Remark
$\mathbf{0}$	With the highest amplitude	Most frequently used
$\mathbf{1}$	First one	For liquids applications with multiple echoes within the Measuring Window

P26: .-.- Level elevation rate (filling speed) (m / h or ft / h)
FACTORY DEFAULT: $2000 \mathrm{~m} / \mathrm{h}$
P27: Level descent rate (emptying speed) (m / h or ft/h)
FACTORY DEFAULT: $2000 \mathrm{~m} / \mathrm{h}$
These parameters provide additional protection against echo loss in applications involving very heavy fuming. Correct setting increases reliability of the measurement during filling and emptying. The parameters must not be smaller than the fastest possible filling/emptying rate of the actual technology.

Attention! Level changing rate is rather different near to the conical or spherical bottom of such a vessel.

a	Echo loss indication	Remark
0	Delayed indication	During short echo-loss (for the period of 2(b+1)*P20) analogue output will hold last value. After this period the current value according to the setting in P12:a and via HART ERROR CODE 2 will be transmitted.
1	No indication	For the time of echo-loss, analogue output will hold last value.
2	Filling simulation	Losing echo during the filling process, transmitted value will increase according to the filling speed set in P26
3	Immediate indication	Losing echo, the current value (according to the setting in P12:a) and the ERROR CODE 2 (via HART) will immediately be transmitted.
4	Empty tank indication	Echo-loss may occur in completely empty tanks with a spherical bottom due to deflection of the ultrasonic beam, or in case of silos with an open outlet. In such cases it may be useful to indicate empty tank instead of echo loss.

One fixed object in the tank, disturbing the measurement, can be blocked out. By the use of the Echo Map (P70) the precise distance of disturbing object can be read out. This value should be entered in this parameter.

P31: ...- Sound velocity at $20^{\circ} \mathrm{C}(\mathrm{m} / \mathrm{s}$ or ft / s depending on $\mathrm{POO}(\mathrm{c})$
FACTORY DEFAULT :: 343.8 (m/s), 1128 (ft/s)
This parameter should be used if the sound velocity in the gases above the measured surface differs largely from that of in the air. This is recommended for applications where the gas is more or less homogeneous. If it is not, the accuracy of the measurement can be improved using 32-point linearisation (P48, P49).
For sound velocities in various gases see section "Sound Velocities".

P32: ---- Specific gravity FACTORY DEFAULT: 0

Entering a value (other than " 0 ") of specific gravity in this parameter, the weight will be displayed instead of VOL.
Engineering unit should be $\left[\mathrm{kg} / \mathrm{dm}^{3}\right]$ or $\left[\mathrm{lb} / \mathrm{f}^{3}\right]$ depending on POO (c)

5.3.6. VOLUME (CONTENT) MEASUREMENT

P40: -- ba Tank shape

FACTORY DEFAULT: 00

ba	Tank shape	Also to be set
b0	Standing cylindrical tank shape (value of "b" as below)	P40 (b), P41
$\mathbf{0 1}$	Standing cylindrical tank with conical bottom	P41, P43, P44
$\mathbf{0 2}$	Standing rectangular tank (with chute)	P41, P42, P43, P44, P45
b3	Lying cylindrical tank shape (value of "b" as bellow)	P40 (b), P41, P42
$\mathbf{0 4}$	Spherical tank	P41

Attention!
The value "a" determining the shape of the tank should be set first.

P41-45: Tank dimensions
Standing cylindrical tank with hemispherical bottom $\mathrm{a}=0$

日

P40 b=3 b=2

Standing cylindrical tank with conical bottom $a=1, b=0$

且

FACTORY DEFAULT: 0

Standing rectangular tank
with or without chute $a=2, b=1$

Plain bottom P43, P44 and $\mathrm{P} 45=0$

5.3.7. OPEN CHANNEL FLOW MEASUREMENT

P40: - - ba Devices, formula, data
FACTORY DEFAULT: 00

ba	Devices, formula, data						Also to be set
		Type	Formula	$Q_{\text {min }}[1 / 5]$	Q max [//s]	"P" [cm]	
00		GPA-1P1	$\mathrm{Q}[/ / \mathrm{s}]=60.87^{*} \mathrm{~h}^{1.552}$	0.26	5.38	30	P46
01		GPA-1P2	$Q[/ / \mathrm{s}]=119.7^{*} \mathrm{~h}^{1.553}$	0.52	13.3	34	P46
02		GPA-1P3	$Q[/ / \mathrm{s}]=178.4^{*} \mathrm{~h}^{1.555}$	0.78	49	39	P46
03		GPA-1P4	$Q[/ / \mathrm{s}]=353.9^{*} \mathrm{~h}^{1.558}$	1.52	164	53	P46
04		GPA-1P5	$Q[/ / \mathrm{s}]=521.4{ }^{*} \mathrm{~h}^{1.558}$	2.25	360	75	P46
05		GPA-1P6	$Q[/ / \mathrm{s}]=674.6 * \mathrm{~h}^{1.556}$	2.91	570	120	P46
06		GPA-1P7	$Q[/ / \mathrm{s}]=1014.9^{*} \mathrm{~h}^{1.56}$	4.4	890	130	P46
07		GPA-1P8	$Q[/ / \mathrm{s}]=1368^{\star}{ }^{1.5638}$	5.8	1208	135	P46
08		GPA-1P9	$Q[/ / \mathrm{s}]=2080.5^{*} \mathrm{~h}^{1.5689}$	8.7	1850	150	P46
09	General PARSHALL flume						P46, P42
10	PALMER-BOWLUS (D/2)						P46, P41
11	PALMER-BOWLUS (D/3)						P46, P41
12	PALMER-BOWLUS (Rectangular)						P46, P41, P42
13	Khafagi Venturi						P46, P42
14	Bottom-step weir						P46, P42
15	Suppressed rectangular or BAZIN weir						P46, P41, P42
16	Trapezoidal weir						P46, P41, P42
17	Special trapezoidal (4:1) weir						P46, P42
18	V-notch weir						P46, P42
19	THOMSON (90응otch) weir						P46
20	Circular weir						P46, P41
21	General flow formula: $\mathrm{Q}[/ / \mathrm{s}]=1000 * \mathrm{P} 41 * \mathrm{~h}^{\text {P42 }}, \mathrm{h}[\mathrm{m}]$						P46, P41, P42

P40 $=00$	NIVELCO Parshall flumes (GPA1P1 - GPA-1P9) For further details see the Manual of the Parshall flume	
P40=09	General Parshall flume $0.305 \text { < P42 (width) < } 2.44$ $\mathrm{Q}[/ / \mathrm{s}]=372 \cdot \mathrm{P} 42 \cdot\left(\mathrm{~h} / 0,3055^{1,569 ~ P 42^{0,026}}\right.$ $2.5<$ P42 $\mathrm{Q}[/ / \mathrm{s}]=\mathrm{K} * \mathrm{P} 42 * \mathrm{~h}^{1.6}$$P=2 / 3 * A$P42 $[\mathrm{m}]$ K 3.05 2.450 4.57 2.400 6.10 2.370 7.62 2.350 9.14 2.340 15.24 2.320	

$\mathrm{P} 40=10$	Palmer-Bowlus (D/2) flume $\begin{aligned} & Q\left[m^{3} / \mathrm{s}\right]=\mathrm{f}(\mathrm{~h} 1 / \mathrm{P} 41) \times \mathrm{P} 41^{2.5}, \text { where } \mathrm{h} 1[\mathrm{~m}]=\mathrm{h}+(\mathrm{P} 41 / 10) \\ & \mathrm{P} 41[\mathrm{~m}] \end{aligned}$	
$\mathrm{P} 40=11$	Palmer-Bowlus (D/3) flume $\begin{aligned} & Q\left[m^{3} / \mathrm{s}\right]=\mathrm{f}(\mathrm{~h} 1 / \mathrm{P} 41) \times \mathrm{P} 41^{2.5}, \text { where } \mathrm{h} 1[\mathrm{~m}]=\mathrm{h}+(\mathrm{P} 41 / 10) \\ & \mathrm{P} 41[\mathrm{~m}] \end{aligned}$	
$\mathrm{P} 40=12$	Palmer-Bowlus (rectangular) flume $\begin{aligned} & Q\left[m^{3} / \mathrm{s}\right]=C * P 42 * h^{1.5}, \text { where } C=f(P 41 / P 42) \\ & \text { P41 }[\mathrm{m}], \text { P42 }[\mathrm{m}] \end{aligned}$	

$P 40=13$	Khafagi Venturi flume $\begin{aligned} & Q\left[m^{3} / \mathrm{s}\right]=1.744 \cdot \mathrm{P} 42 \cdot \mathrm{~h}^{1.5}+0.091 \cdot \mathrm{~h}^{2.5} \\ & \mathrm{P} 42[\mathrm{~m}] \\ & \mathrm{h}[\mathrm{~m}] \end{aligned}$	
$P 40=14$	Bottom step weir $\begin{aligned} & 0.0005<\mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]<1 \\ & 0.3<\mathrm{P} 42[\mathrm{~m}]<15 \\ & 0.1<\mathrm{h}[\mathrm{~m}]<10 \\ & \mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]=5.073 \cdot \mathrm{P} 42 \cdot \mathrm{~h}^{1.5} \end{aligned}$ Accuracy: $\pm 10 \%$	P40=14
$\mathrm{P} 40=15$	Suppressed rectangular or BAZIN weir $\begin{aligned} & 0.001<\mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]<5 \\ & 0.15<\mathrm{P} 41[\mathrm{~m}]<0.8 \\ & 0.15<\mathbf{P 4 2}[\mathrm{m}]<3 \\ & 0.015<\mathrm{h}[\mathrm{~m}]<0.8 \\ & \mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]=1.77738(1+0.1378 \mathrm{~h} / \mathrm{P} 41) \cdot \mathrm{P} 42 \cdot(\mathrm{~h}+0.0012)^{1.5} \\ & \text { Accuracy: } \pm 1 \% \end{aligned}$	

$\mathrm{P} 40=16$	Trapezoidal weir $\begin{aligned} & 0.0032<\mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]<82 \\ & 20<\mathrm{P} 41\left[{ }^{\circ}\right]<100 \\ & 0.5<\mathrm{P} 42[\mathrm{~m}]<15 \\ & 0.1<\mathrm{h}[\mathrm{~m}]<2 \\ & \mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]=1.772 \cdot \mathrm{P} 42 \cdot \mathrm{~h}^{1.5}+1.320 \cdot \operatorname{tg}(\mathrm{P} 41 / 2) \cdot \mathrm{h}^{2.47} \end{aligned}$ Accuracy: $\pm 5 \%$	
P40=17	Special trapezoidal (4:1) weir $\begin{aligned} & 0.0018<\mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]<50 \\ & 0.3<\mathrm{P} 42[\mathrm{~m}]<10 \\ & 0.1<\mathrm{h}[\mathrm{~m}]<2 \\ & \mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]=1.866 \cdot \mathrm{P} 42 \cdot \mathrm{~h}^{1.5} \end{aligned}$ Accuracy: $\pm 3 \%$	
P40=18	V-notch weir $\begin{aligned} & 0.0002<Q\left[\mathrm{~m}^{3} / \mathrm{s}\right]<1 \\ & 20<\mathrm{P} 42\left[^{\circ}\right]<100 \\ & 0.05<\mathrm{h}[\mathrm{~m}]<1 \\ & Q\left[\mathrm{~m}^{3} / \mathrm{s}\right]=1.320 \cdot \operatorname{tg}(\mathrm{P} 42 / 2) \cdot \mathrm{h}^{2.47} \end{aligned}$ Accuracy: $\pm 3 \%$	P40 $=18$ 身

P40 $=19$	THOMSON $\left(90^{\circ}-\right.$ notch $)$ weir $\begin{aligned} & 0.0002<\mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]<1 \\ & 0.05<\mathrm{h}[\mathrm{~m}]<1 \\ & \mathrm{Q}\left[\mathrm{~m}^{3} / \mathrm{s}\right]=1.320 \cdot \mathrm{~h}^{2.47} \end{aligned}$ Accuracy: $\pm 3 \%$		
P40 $=20$	Circular weir $\begin{aligned} & 0.0003<Q\left[m^{3} / \mathrm{s}\right]<25 \\ & 0.02<h[\mathrm{~m}]<2 \\ & Q\left[\mathrm{~m}^{3} / \mathrm{s}\right]=\mathrm{m} * \mathrm{~b} \cdot \mathrm{D}^{2.5} . \text { where } \mathrm{b}=\mathrm{f}(\mathrm{~h} / \mathrm{D}) \\ & \mathrm{m}=0.555+0.041 \cdot \mathrm{~h} / \mathrm{P} 41+(\mathrm{P} 41 /(0.11 \cdot \mathrm{~h})) \end{aligned}$ Accuracy: $\pm 5 \%$		

P46: -.-. Distance at $\mathbf{Q}=0$
FACTORY DEFAULT: 0
Distance between sensor surface and the level at which flow starts has to be entered in this parameter.

5.3.8. Programming the Volume/ MAss/ $\underline{\text { Low }} \underline{\text { TABLE }}$ (VMFT)

P47: ---a The operation of VMFT
The customer can assign output signals in accordance with optional characteristics to values measured by the transmitter. The characteristic can be defined with maximum 32 points. Between the points the device will calculate the output signal from the measured value with linear interpolation. It can be used for example for assigning optional output signal to the measured value or calculating volume from level in case of tank shapes not included in the selection (e.g. tank with dent).

\mathbf{a}	VMFT mode
$\mathbf{0}$	doesn't work
$\mathbf{1}$	works

Conditions of correct programming of the data pairs

- The table must always start with $\mathrm{L}(1)=0$ and $\mathrm{r}(1)=$ output value (assigned to 0 level).
- The L column can not include identical values.
- If the table contains less than 32 data pairs, the L column must be ended with a level value " 0 " in the row following the last relevant data pair.

\mathbf{i}	$\mathrm{L}($ Left column $)$ Level values measured	\mathbf{r} (Right column) Output value
1	0	$\mathrm{r}(1)$
2	$\mathrm{~L}(2)$	$\mathrm{r}(2)$
	$\mathrm{L}(\mathrm{i})$	$\mathrm{r}(\mathrm{i})$
nn	$\mathrm{L}(\mathrm{nn})$	$\mathrm{r}(\mathrm{nn})$
$\mathrm{nn}+1$	0	
32		

Shows the number of data pairs entered to VMFT. Read-only parameter.

5.3.9. INFORMATIONAL PARAMETERS (READ ONLY PARAMETERS)

P76: Head of flow (LEV) (Read only parameter)
The Headwater value can be checked here. This is the " h " value in the formula for flow calculation.
P77: TOT1 volume flow totalised (resettable)
P78: --.- TOT2 volume flow totalised (non-resettable)

5.3.11. OthER PARAMETERS

```
P96: ---- Software code 1 (Read only parameter)
P97: --.- Software code 2 (Read only parameter)
P98: - -- Hardware code (Read only parameter)
P99: --.- Access lock by secret code
```

The purpose of this feature is to provide protection against accidental programming or intentional reprogramming of parameters by a person not entitled to do so. The secret code can be any value other than $\mathbf{0 0 0 0}$. Setting a secret code will automatically be activated when the EasyTREK is returned to the Measurement Mode. In order to program locked device the secret code should be entered first in P99. Thus for entering a new code or erasing the old one the knowledge of the previous code is necessary.

6. MAINTENANCE AND REPAIR

EasyTREK SP units do not require maintenance on a regular basis. The need for cleaning of the sensor head may occur. Cleaning should be performed by utmost care where scraping or denting of the transducer have to be avoided. Repair under or after the guarantee period should only be carried out by NIVELCO. Devices for repair should only be returned duly cleaned and disinfected.

6.1. FIRMWARE UPGRADE

Based on the observations \& needs of our customers NIVELCO constantly improves and revises the operating software of the device. The software can be upgraded with the help of the IrDA communication port of the device. For more information about software updates please contact NIVELCO.

7. ERROR CODES

Error Code	Error description	Causes and solutions
$\mathbf{1}$	Memory error	Contact local agent
No Echo	Echo loss	See Action 5 and 6
$\mathbf{3}$	Hardware error	Contact local agent
$\mathbf{4}$	Display overflow	Check settings
$\mathbf{5}$	Sensor error or improper installation/mounting, level in the dead band	Verify sensor for correct operation and check for correct mounting according to the User's Manual
$\mathbf{6}$	The measurement is at the reliability threshold	Better location should be found.
$\mathbf{7}$	No signal received within the measuring range specified in P04 and P05	Check programming, also look for installation mistake
$\mathbf{1 2}$	Linearisation table error: both L(1) and L(2) are zero (no valid data-pairs)	See "Linearisation" Section
$\mathbf{1 3}$	Linearisation table error: same L(i) data is given twice in the table	See "Linearisation" Section
$\mathbf{1 4}$	Linearisation table error: the r(i) values are not monotone increasing	See "Linearisation" Section"
$\mathbf{1 5}$	Linearisation table error: measured Level is higher than the last Volume or Flow data-pair	See "Linearisation" Section"
$\mathbf{1 6}$	The check sum of the program is wrong	Contact local agent
$\mathbf{1 7}$	Parameter consistency failure	Check programming
$\mathbf{1 8}$	Hardware failure	Contact local agent

8. PARAMETER TABLE

Par.	Page	Description	Value		Par.	Page	Description	Value	
			d	c b a				d c	b a
P00	13	Application / Engineering Units			P28	25	Echo loss indication		
P01	14	Measurement Mode			P29	26	Blocking out a disturbing object		
P02	16	Calculation units			P30		-		
P03	16	Temperature compensation			P31	26	Sound velocity values in different gases		
P04	17	Maximum Measuring Distance			P32	26	Specific gravity		
P05	18	Minimum Measuring Distance			P33		-		
P06	19	Far End Blocking			P40	27	Selection of tank shape / open channel		
P07	19	Manual temperature compensation			P41	27	Dimensions of tank / Open Channel		
P08	20	Fixed current output			P42	27	Dimensions of tank / Open Channel		
P09		-			P43	27	Dimensions of tank / Open Channel		
P10	20	Transmitted value assigned to " 4 mA "			P44	27	Dimensions of tank / Open Channel		
P11	20	Transmitted value assigned to " 20 mA "			P45	27	Dimensions of tank / Open Channel		
P12	21	Current output mode			P46	33	Level pertaining to flow $\mathrm{Q}=0$		
P13	22	Relay function			P47	34	VMF Table		
P14	22	Relay parameter - Operating value			P48	34	Number of VMFT elements		
P15	22	Relay parameter - Releasing value			P49		-		
P16		-			P50		-		
P17	22	Relay parameter - Pulse rate			P51		-		
P18		-			P52		-		
P19	23	Short address of the unit			P53		-		
P20	23	Damping			P54		-		
P21		-			P55		-		
P22	23	Dome top tank compensation							
P23		-							
P24	23	Target tracking speed							
P25	24	Selection of Echo in the measuring window							
P26	24	Level elevation rate							
P27	24	Level descent rate							

Par.	Page	Description	Value			Par.	Page	Description	Value		
				c b					d	c b	a
P56		-				P78	36	TOT2 volume flow totalised			
P57		-				P79		-			
P58		-				P80		-			
P59		-				P81		-			
P60	35	Overall operating hours of the unit				P82		-			
P61	35	Time elapsed after last switch-on				P83		-			
P62	35	Operating hours of the relay				P84		-			
P63	35	Number of switching cycles of the relay				P85		-			
P64	35	Actual temperature of the transducer				P86		-			
P65	35	Maximum temperature of the transducer				P87		-			
P66	35	Minimum temperature of the transducer				P88		-			
P67		-				P89		-			
P68		-				P90		-			
P69		-				P91		-			
P70	35	Echo Map				P92		-			
P71	35	Position of the measuring window				P93		-			
P72	35	Amplitude of the selected echo				P94		-			
P73	35	Position of the selected echo				P95		-			
P74	35	Signal / noise ratio				P96	36	Software code 1			
P75	35	Blocking distance value				P97	36	Software code 2			
P76	36	Water head of the flow				P98	36	Hardware code			
P77	36	TOT1 volume flow totalised				P99	36	Access lock by secret code			

9. SOUND VELOCITY VALUES IN DIFFERENT GASES

The following table contains the sound velocity values of various gases measured at $20^{\circ} \mathrm{C}$.

Gases	Formula	Sound Velocity (m/s)
Acetaldehyde	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	252.8
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	340.8
Ammonia	NH_{3}	429.9
Argon	Ar	319.1
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	183.4
Carbon dioxide	CO_{2}	268.3
Carbon monoxide	CO	349.2
Carbon tetrachloride	CCl_{4}	150.2
Chlorine	Cl_{2}	212.7
Dimethyl ether	$\mathrm{CH}_{3} \mathrm{OCH}$	213.4
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	327.4
Sulphur hexafluoride	SF_{6}	137.8

Gases	Formula	Sound Velocity (m/s)
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$	267.3
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	329.4
Helium	He	994.5
Hydrogen sulphide	$\mathrm{H}_{2} \mathrm{~S}$	321.1
Methane	CH_{4}	445.5
Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	347
Neon	Ne	449.6
Nitrogen	N_{2}	349.1
Nitrogen monoxide	NO	346
Oxygen	O_{2}	328.6
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	246.5

spa5804a0600p_05
June 2018
NIVELCO reserves the right to change technical specifications without notice.

