1. APPLICATION

UNICONT PKK-312- series is a $4-20 \mathrm{~mA}$, current controlled switch the relay of which would switch over at currents (taught to the unit), depending on the limit, switching difference or window comparator modes selected by programming. Fault condition monitoring can be switched on or off and it can be selected that the relay should be energised or de-energised when detecting failure. Failure may be represented by discontinuity of cable/lower value fault current or short circuit/upper value fault current.
The unit is suitable for powering all NIVELCO made 2-wire ($4-20 \mathrm{~mA}$) transducers.
Some models of this series meet requirements for intrinsically safe operation.
UNICONT PKK-312-8 Ex unit is able without any further programming to monitor current levels of the DC powered, 2-wire NIVOSWITCH Ex vibration fork both in damped and in vibrating modes as well as to control relay output.

2.2 SPECIAL DATA

	EX APPROVED MODELS					Ordinary models						
TíPUS	PKK-312-5 Ex	PKK-312-6 Ex	PKK-312-9 Ex	PKK-312-7 Ex	PKK-312-8 Ex	PKK-312-1	PKK-312-2	PKK-312-3	PKK-312-4			
Power supply range	$\begin{gathered} 230 \vee \mathrm{VC} \pm 10 \% \\ 50 \ldots . .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 110 \mathrm{VAC} \pm 10 \% \\ 50 . . .60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 24 \mathrm{VAC} \pm 10 \% \\ 50 . . .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 \ldots 60 \mathrm{~Hz}, \\ 24 \mathrm{VDC} \pm 15 \% \\ \hline \end{gathered}$		$\begin{gathered} 230 \vee \mathrm{AC} \pm 10 \% \\ 50 . . .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 110 \mathrm{VAC} \pm 10 \% \\ 50 \ldots . .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 24 \text { V AC } \pm 10 \% \\ 50 \ldots 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 24 \mathrm{VAC} \pm 10 \%, 50 \ldots . \ldots 0 \mathrm{~Hz}, \\ 24 \mathrm{VDC} \pm 15 \% \\ \hline \end{gathered}$			
Power consumption	$<2.5 \mathrm{VA}$			<2,5 VA <2.5 W		<2.7 VA			<2.5 W			
Switching levels	2 values in the range of $1 . . .22 \mathrm{~mA}$				10.5 mA ; 12.5 mA	2 values in the range of $1 . . .22 \mathrm{~mA}$						
Ex protection mark	(δx \\| $\\|$ (1) G [EEx ia] $\\| B$			(Ex) II (1) G [EEx ia] IIC		-						
Intrinsically safe maximum values	$\begin{gathered} \hline \mathrm{U}_{0}<28.4 \mathrm{~V} ; \mathrm{I}_{0}<140 \mathrm{~mA} ; \mathrm{P}_{0}<1.1 \mathrm{~W} ; \\ \mathrm{L}_{0}<6 \mathrm{mH} ; \mathrm{C}_{0}<50 \mathrm{nF} \end{gathered}$			$\begin{gathered} \hline \mathrm{U}_{0}<28.4 \mathrm{~V} ; \mathrm{I}_{0}<80 \mathrm{~mA} ; \mathrm{P}_{0}<0,6 \mathrm{~W} \\ \mathrm{~L}_{0}<4 \mathrm{mH} ; \mathrm{C}_{0}<50 \mathrm{nF} \end{gathered}$		-						
Output load capability	$\begin{gathered} I_{\mathrm{T}}=22 \mathrm{~mA} \\ \text { when } U_{\text {out }} \approx 12 \mathrm{~V} \end{gathered}$			$\mathrm{I}_{\mathrm{T}}=22 \mathrm{~mA}$ when $U_{\text {OUT }} \approx 15 \mathrm{~V}$	-	$\begin{gathered} U_{0}=30 \mathrm{~V} \\ I_{\text {max }}=70 \mathrm{~mA} U_{\text {OUT min }}=16 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{U}_{0}=24 \mathrm{~V} \\ I_{\text {max }}=80 \mathrm{~mA} \bigcup_{\text {OUT min }}=23 \mathrm{~V} \end{gathered}$			
Protection class	Class II			Class III		Class II			Class III			
Ambient temp.	$-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$					$-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$						

2.3 Accessories

- User's Manual
- Certificate of Warranty
- Declaration of Conformity
2.4 Dimensions

2.5 ORDER CODE

Powering / Ex		Code
230 V AC		1
110 V AC		2
24 V AC		3
$24 \mathrm{VAC} / \mathrm{DC}$		4
230 V AC	Ex	5
110 VAC	Ex	6
$24 \mathrm{VAC} / \mathrm{DC}$	Ex	7
$24 \mathrm{VAC} / \mathrm{DC}$	Ex	8**
24 V AC	Ex	9***

Ex models should be marked with Ex
For DC powered, 2-wire NIVOSWITCH Ex vibrating fork of NIVELCO
** Approval pending

3. INSTALLATION

UNICONT PKK-312-■ should be mounted on DIN EN 50022-35 rail.

NOTE!

Prior to the installation make sure that the input current values can be provided by the loop of the application. If not, teaching of the current values has to be carried out before installation and wiring. (See Point 5 "Teaching current value of tripping point")

4. WIRING

4.1 Ex models

PKK-312-8 Ex with NIVOSWITCH Ex vibrating fork	PKK-312-7 Ex with 2-wire Ex transmitter (e.g. EchoTREK SEA-380-6 Ex)	PKK-312-5 Ex... PKK-312-7 Ex for monitoring of Ex passive switch and cable

4.2 ORDINARY MODELS

PKK-312-1 ... PKK-312-4 with 4 -wire active transmitter (e.g. EchoTREK STA-360)	PKK-312-1 ... PKK-312-4 with 4 wire active transmitter (e.g. MICROSONAR UTS-211)	PKK-312-1 ... PKK-312-4 for monitoring of passive switch

5. INSTALLATION AND SETTING UP

After 3 s from power up the unit begins to work with the signals as per table of WORKING STATUS.		
Working status		
LED	Indication	Interpretation
\square	GREEN	Relay energised $\mathrm{R}=1$
	RED	Relay de-energised $\mathrm{R}=0$
	SIMULTANOUS RED BLINKING OF BOTH LED	Memory failure, Relay state sustained
FAIL (STEP)	GREEN	No cable fault/No fault current. No cable monitoring
	RED	Cable fault, or. fault current

The state of the relay in accordance with the operation mode and depending on the input current will be as shown on the left hand diagram. Operation with delayed switching is demonstrated on the right hand diagram.

State of the relay depending on the input current

Relay operation with delayed switching

CAUTION!

If on power up of a unit, set for switching differential, the value of the current will be between the two tripping points, the relay would always remain de-energised irrespectively of the relay operation mode ($R=1$ or $R=0$) programmed before.

Depending on the actual task, programming of the unit may be needed which involves setting of the Operating Mode with the possibilities as below
PKK-312-8 Ex unit can be used without any programming for the powering and remote switching function of the Nivelco made DC powered, 2-wire NIVOSWITCH Ex vibrating fork. Tripping point current values of 10,5 and $12,5 \mathrm{~mA}$ and switching differential operating mode can not be changed!

Setting possibilities:

- Relay operating mode
- Monitoring of cable discontinuity
- Monitoring of cable short circuit
- Damping
- Return to default

A PKK-312-1...PKK-312-7 Ex
Setting possibilities:

- Selection of comparison type
- Teaching current value
- Relay operating mode
- Monitoring of cable discontinuity
- Monitoring of cable short circuit
- Damping
- Return to default

PRocgammina

Programming involves setting of operating mode and teaching of the input current.
Programming / viewing operating mode
Programming can be entered by pressing key A (for about 5 s) till the LED PROGRAM lights up. While in programming mode by short pressing of key A the adjustment columns as per the table below can be accessed step by step. indicated by the relevant LED STEP. Being in the desired column the required raw can be selected by short pressing of key B indicated by the relevant LED SELECT. After performing adjustment needed, programming mode can be quit by pressing key A (for about 5 s) till the LED PROGRAM goes off.

PROGRAMMING / VIEWING OPERATING MODE					
Enter programming mode: press key \mathbf{A} (for about 5 s) till the LED PROGRAM lights up					
Adjustment columns with corresponding LED STEP states, accessed by short pressing of key \mathbf{A}					Adjustment raw with relevant state of the LED SELECT, selected by short pressing of key B
GREEN	GREEN BLINKING	RED	RED BLINKING	OFF	
Relay operation mode	Comparat or operation mode	Cable short circuit */ monitoring lower current	Cable discontinuity */ monitoring upper current	Switching dely	
$\mathrm{R}=1$	Limit value 1.	ON, relay should be activated	ON, relay should be activated	0,1 s	GREEN
$\mathrm{R}=0$	Limit value 2.	ON, relay should be released	ON, relay should be released	1 s	GREEN BLINKING
--	Switch. diff	NO	NO	2 s	RED
--	Window	--	--	5 s	RED BLINKING

Quit programming mode: press key \mathbf{A} (for about 5 s) till the LED PROGRAM goes off.

AUTOMATIC QUITTING PROGRAMMING MODE
The unit will operate during programming in accordance with the previous parameters entered in the last completed programming. The new modified parameters will only be effective after quitting programming mode.
Having left the transmitter in programming mode, it would after 30 s automatically quit programming mode. Since this represents uncompleted programming, the performed modification would not be effective.

Relay test

Proper operation of the relay can be tested by pressing key \mathbf{B} for about 5 s as a consequence of which the state of the relay and colour of the LED (e.g. from green to red) would be changed. Releasing the key the relay and LED would return to the previous position.

Return to default

Programming would be returned to default if keys \mathbf{A} and \mathbf{B} are pressed before/during power up.
Teaching current value of tripping point
Teaching input currents represents saving of $\mathrm{I}_{\mathbb{N}}$ current values for switching point 1 and switching point 2 prevailing between terminals (as per right hand drawing) at the moment of the teaching.
Necessary current values can be provided by one of the arrangements or by the circuit of the actual application on site.
If the input current will be provided by the circuit of the actual application its value have not to be known.

Arrangements for teaching input currents
To perform teaching, keys \mathbf{A} and \mathbf{B} should be pressed simultaneously for about 5 s until teaching mode has been entered, indicated by the blinking of LED PROGRAM. Releasing key B, or A (only one of them) the momentary current value will be assigned to switching point 1 or 2 . Also releasing the other key, teaching will be completed, indicated by the going off of LED PROGRAM. Having taught the first current value, the other one can also be taught without quitting teaching mode, whereas the key already released should be pressed again (for about 5 s) and the other key released.

TEACHING					
	Position of key A	Position of key B	STEP LED	$\begin{aligned} & \text { PROGR. } \\ & \text { LED } \end{aligned}$	$\begin{gathered} \hline \text { SELECT } \\ \text { LED } \end{gathered}$
Entering teaching mode	KEEP PRESSED > 5 s		OFF	blinking	OFF
Teaching current value for point 1	$\begin{gathered} \text { KEEP } \\ \text { PRESSED } \end{gathered}$	RELEASE	OFF		GREEN if SUCCESSFUL RED blinking if FAILED
Quitting teaching mode	RELEASE	-	According to WORKING STATUS	OFF	According to WORKING STATUS
Entering teaching mode	KEEP PRESSED > 5 s		OFF	blinking	OFF
Teaching current value for point 2	RELEASE	KEEP PRESSED	GREEN if SUCCESSFUL RED blinking if FAILED		OFF
Quitting teaching mode	-	RELEASE	According to WORKING STATUS	OFF	According to WORKING STATUS

6. MAINTENANCE AND REPAIR

The unit does not require regular maintenance. All repairs will be carried out at the manufacturer's premises.

7. STORAGE

Temperature: $-30^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Humidity: maximum 98\%

8. WARRANTY

All Nivelco products are warranted free of defects in materials or workmanship for a period of two years from the date of purchase, as indicated in the Certificate of Warranty.

